# Appendix D. Example expressions

Note that semicolon can be replaced with comma in function arguments, if comma is not used as decimal or thousands separator.

## Basic functions and operators

sqrt 4 = sqrt(4) = 4^(0.5) = 4^(1/2) = 2

sqrt(25; 16; 9; 4) = [5  4  3  2]

sqrt(32) = 4 × √(2) (in exact mode)

cbrt(−27) = root(-27; 3) = −3 (real root)

(−27)^(1/3) ≈ 1.5 + 2.5980762i (principal root)

ln 25 = log(25; e) ≈ 3.2188758

log2(4)/log10(100) = log(4; 2)/log(100; 10) = 1

5! = 1 × 2 × 3 × 4 × 5 = 120

5\2 = 5//2 = trunc(5 / 2) = 2 (integer division)

5 mod 3 = mod(5; 3) = 2

52 to factors = 2^2 × 13

25/4 × 3/5 to fraction = 3 + 3/4

gcd(63; 27) = 9

sin(pi/2) − cos(pi) = sin(90 deg) − cos(180 deg) = 2

sum(x; 1; 5) = 1 + 2 + 3 + 4 + 5 = 15

sum(\i^2+sin(\i); 1; 5; \i) = 1^2 + sin(1) + 2^2 + sin(2) + ... ≈ 55.176162

product(x; 1; 5) = 1 × 2 × 3 × 4 × 5 = 120

var1:=5 (stores value 5 in variable var1)

var1 × 2 = 10

5^2 #this is a comment = 25

sinh(0.5) where sinh()=cosh() = cosh(0.5) ≈ 1.1276260

plot(x^2; −5; 5) (plots the function y=x^2 from -5 to 5)

## Units

5 dm3 to L = 25 dm^3 to L = 5 L

20 miles / 2h to km/h = 16.09344 km/h

1.74 to ft = 1.74 m to ft ≈ 5 ft + 8.5039370 in

1.74 m to -ft ≈ 5.7086614 ft

100 lbf × 60 mph to hp ≈ 16 hp

50 Ω × 2 A = 100 V

50 Ω × 2 A to base = 100 kg·m²/(s³·A)

10 N / 5 Pa = (10 N)/(5 Pa) = 2 m²

5 m/s to s/m = 0.2 s/m

500 € − 20% to \$ ≈ \$451.04

500 megabit/s × 2 h to b?byte ≈ 419.09516 gibibytes

## Physical constants

k_e / G × a_0 = (coulombs_constant / newtonian_constant) × bohr_radius ≈ 7.126e9 kg·H·m^−1

ℎ / (λ_C × c) = planck ∕ (compton_wavelength × speed_of_light) ≈ 9.1093837e-31 kg

5 ns × rydberg to c ≈ 6.0793194E-8c

atom(Hg; weight) + atom(C; weight) × 4 to g ≈ 4.129e-22 g

(G × planet(earth; mass) × planet(mars; mass))/(54.6e6 km)^2 ≈ 8.58e16 N (gravitational attraction between earth and mars)

## Uncertainty and interval arithmetic

"±" can be replaced with "+/-"; result with interval arithmetic activated is shown in parenthesis

sin(5±0.2)^2/2±0.3 ≈ 0.460±0.088 (0.46±0.12)

(2±0.02 J)/(523±5 W) ≈ 3.824±0.053 ms (3.825±0.075 ms)

interval(−2; 5)^2 ≈ intervall(−8.2500000; 12.750000) (intervall(0; 25))

## Algebra

(5x^2 + 2)/(x − 3) = 5x + 15 + 47/(x − 3)

(\a + \b)(\a − \b) = ("a" + "b")("a" − "b") = 'a'^2 − 'b'^2

(x + 2)(x − 3)^3 = x^4 − 7x^3 + 9x^2 + 27x − 54

factorize x^4 − 7x^3 + 9x^2 + 27x − 54 = x^4 − 7x^3 + 9x^2 + 27x − 54 to factors = (x + 2)(x − 3)^3

cos(x)+3y^2 where x=pi and y=2 = 11

gcd(25x; 5x^2) = 5x

1/(x^2+2x−3) to partial fraction = 1/(4x − 4) − 1/(4x + 12)

x+x^2+4 = 16
= x = 3 or x = −4

x^2/(5 m) − hypot(x; 4 m) = 2 m where x>0
x ≈ 7.1340411 m

cylinder(20cm; x) = 20L (calculates the height of a 20 L cylinder with radius of 20 cm)
= x = (1 ∕ (2π)) m
= x ≈ 16 cm

asin(sqrt(x)) = 0.2
= x = sin(0.2)^2
= x ≈ 0.039469503

x^2 > 25x
= x > 25 or x < 0

solve(x = y+ln(y); y) = lambertw(e^x)

solve2(5x=2y^2; sqrt(y)=2; x; y) = 32/5

multisolve([5x=2y+32, y=2z, z=2x]; [x, y, z]) = [−32/3  −128/3  −64/3]

dsolve(diff(y; x) − 2y = 4x; 5) = 6e^(2x) − 2x − 1

## Calculus

diff(6x^2) = 12x

diff(sinh(x^2)/(5x) + 3xy/sqrt(x)) = (2/5) × cosh(x^2) − sinh(x^2)/(5x^2) + (3y)/(2 × √(x))

integrate(6x^2) = 2x^3 + C

integrate(6x^2; 1; 5) = 248

integrate(sinh(x^2)/(5x) + 3xy/sqrt(x)) = 2x × √(x) × y + Shi(x^2) / 10 + C

integrate(sinh(x^2)/(5x) + 3xy/sqrt(x); 1; 2) ≈ 3.6568542y + 0.87600760

limit(ln(1 + 4x)/(3^x − 1); 0) = 4 / ln(3)

## Matrices and vectors

[1, 2, 3; 4, 5, 6] = ((1; 2; 3); (4; 5; 6)) = [1  2  3; 4  5  6] (2×3 matrix)

(1; 2; 3) × 2 − 2 = [(1 × 2 − 2), (2 × 2 − 2), (3 × 2 − 2)] = [0  2  4]

[1 2 3].[4 5 6] = dot([1 2 3]; [4 5 6]) = 32 (dot product)

cross([1 2 3]; [4 5 6]) = [−3  6  −3] (cross product)

[1 2 3; 4 5 6].×[7 8 9; 10 11 12] = hadamard([1 2 3; 4 5 6]; [7 8 9; 10 11 12]) = [7  16  27; 40  55  72] (hadamard product)

[1 2 3; 4 5 6] × [7 8; 9 10; 11 12] = [58  64; 139  154] (matrix multiplication)

[1 2; 3 4]^-1 = inverse([1 2; 3 4]) = [−2  1; 1.5  −0.5]

## Statistics

mean(5; 6; 4; 2; 3; 7) = 4.5

stdev(5; 6; 4; 2; 3; 7) ≈ 1.87

quartile([5 6 4 2 3 7]; 1) = percentile((5; 6; 4; 2; 3; 7); 25) ≈ 2.9166667

normdist(7; 5) ≈ 0.053990967

spearman(column(load(test.csv); 1); column(load(test.csv); 2)) ≈ −0.33737388 (depends on the data in the CSV file)

## Time and date

10:31 + 8:30 to time = 19:01

10h 31min + 8h 30min to time = 19:01

now to utc = "2020-07-10T07:50:40Z"

"2020-07-10T07:50CET" to utc+8 = "2020-07-10T14:50:00+08:00"

"2020-05-20" + 523d = addDays(2020-05-20; 523) = "2021-10-25"

today − 5 days = "2020-07-05"

"2020-10-05" − today = days(today; 2020-10-05) = 87 d

timestamp(2020-05-20) = 1 589 925 600

stamptodate(1 589 925 600) = "2020-05-20T00:00:00"

"2020-05-20" to calendars (returns date in Hebrew, Islamic, Persian, Indian, Chinese, Julian, Coptic, and Ethiopian calendars)

## Number bases

52 to bin = 0011 0100

52 to bin16 = 0000 0000 0011 0100

52 to oct = 064

52 to hex = 0x34

0x34 = hex(34) = base(34; 16) = 52

523<<2&250 to bin = 0010 1000

52.345 to float ≈ 0100 0010 0101 0001 0110 0001 0100 1000

float(01000010010100010110000101001000) = 1715241/32768 ≈ 52.345001

floatError(52.345) ≈ 1.2207031e-6

52.34 to sexa = 52°20′24″

1978 to roman = MCMLXXVIII

52 to base 32 = 1K

sqrt(32) to base sqrt(2) ≈ 100000

0xD8 to unicode = Ø

code(Ø) to hex = 0xD8